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ABSTRACT

Within the convection zone of a rotating star, the presence of the Coriolis force stabilizes long-

wavelength convective modes. These modes, that would have been unstable if the star lacked

rotation, are called overstable convective modes or thermal Rossby waves. We demonstrate that

the Sun’s rotation rate is sufficiently rapid that the lower half of it’s convection zone could

possess overstable modes. Further, we present an analytic solution for atmospheric waves that

reside within a polytropic stratification. We explore in detail the properties of the overstable and

unstable wave modes that exist when the polytrope is weakly unstable to convective overturning.

Finally, we discuss how the thermal Rossby waves that reside within the convection zone of a

star might couple with the prograde branch of the g modes that are trapped within the star’s

radiative zone. We suggest that such coupling might enhance the photospheric visibility of a

subset of the Sun’s g modes.

Subject headings: convection — hydrodynamics — stars: interior — stars: oscillations — stars:

rotation — Sun: interior — Sun: oscillations — Sun: rotation — waves

1. Introduction

The Coriolis force acts to inhibit convection, in both obvious and subtle ways. In addition to suppressing

the efficiency of turbulent heat transport (e.g., Julien et al. 1996; Brandenburg et al. 2009), reducing the

dominant spatial scale of the convective motions (e.g., Featherstone & Hindman 2016; Vasil et al. 2021), and

inducing anisotropy and latitudinal variation in the convective heat flux (e.g., Cowling 1951; Tayler 1973),

rotation has long been known to delay the onset of the convective instability, increasing the thermodynamic

gradients required for spontaneous convective overturning. In a Boussinesq system this appears as an increase

in the critical Rayleigh number that marks the onset of the instability (see Chandrasekhar 1961). In a

gravitationally stratified fluid, the local Ledoux criterion (Ledoux 1947) is modified by rotation such that a

steeper specific entropy or compositional gradient is required for instability. For example, Cowling (1951)

argued that non-axisymmetric motions are locally stable if the square of the buoyancy frequency N2 exceeds

a rotationally dependent threshold (which is negative),

N2 > −4Ω2 k
2
Ω

k2
h

. (1)
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In Cowling’s criteria, Ω is the star’s rotation rate and kΩ and kh are two components of the wavenumber

vector of the convective waveform. The component parallel to the rotation axis is kΩ and the horizontal

component, perpendicular to gravity, is kh. This criterion makes it clear that certain modes of convection

(i.e, certain wavenumbers) can be stabilized by rotation even if the atmosphere is globally unstable by the

Ledoux criteria, namely N2 < 0.

Cowling’s formula further suggests that rotation only influences the stability of those convective motions

that have variation parallel to the rotation axis, i.e., kΩ 6= 0. Without such variation, Cowling’s criterion

reduces to that of Ledoux, N2 > 0. We now know that Cowling’s analysis was incomplete. An entire class

of gravito-inertial waves was excluded from the dispersion relation that was used to derive the stability

criterion. These waves, called thermal Rossby waves in geophysics and planetary science and referred to as

overstable convective modes or low-frequency prograde waves in astrophysics (see Ando 1989; Unno et al.

1989), are essentially convective modes that have been stabilized and made oscillatory by rotation. Stable

forms of these waves exist that disobey Cowling’s criterion. The existence of such waves requires either

curvature of the boundaries to provide a topological β-effect (e.g., Roberts 1968; Busse 1970, 1986) or radial

stratification of the density producing a compressional β-effect (e.g., Hide 1966; Glatzmaier & Gilman 1981;

Unno et al. 1989; Hindman & Jain 2022). Both cases enable a prograde-propagating vorticity wave because

a spinning convective column that is pushed toward the axis of rotation must spin faster either from vortex

stretching induced by the shape of the boundaries or by vortex narrowing caused by density stratification.

Such thermal Rossby waves are absent from Cowling’s calculation because his analysis was a purely local

one that ignored the presence of physical boundaries and did not consider spatial variation in the atmosphere

beyond the term involving the buoyancy frequency. Ando (1989) expanded on Cowling’s derivation by

deriving a local dispersion relation that includes density stratification. From this dispersion relation one can

derive the following local stability criterion for overstable convective modes,

N2 > −4Ω2 k
2
Ω

k2
h

− Ω2 sin2 θ

H2

k2
φ

k2
hk

2
, (2)

where kφ is the azimuthal component of the wavenumber, k is the total wavenumber, θ is the colatitude,

and H is a length scale that depends on the density scale height H, the buoyancy frequency N , and the

gravitational acceleration g,

1

H
≡ 1

H
− 2N2

g
. (3)

In a stellar convection zone, the buoyancy frequency is small and this scale length is nearly equal to the

density scale height H ≈ H. If the wavelength is much shorter that the density scale height (kH � 1),

the criterion described by Equation (2) reduces to that of Cowling, Equation (1), unless the wavenumber is

purely perpendicular to the rotation axis (kΩ = 0). For waves with such an alignment, Ando’s correction

to Cowling’s criterion becomes the dominant term. If one follows Hindman & Jain (2022) and includes the

effect of the acoustic cut-off frequency, ωc, the stability condition for thermal Rossby waves near the equator

(sin θ ≈ 1) becomes

N2 > − Ω2

(k2 + k2
c )H2

, (4)
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where kc is a cut-off wavenumber that depends solely on the density scale height and its radial derivative,

k2
c ≡

ω2
c

c2
=

1

4H2

(
1− 2

dH

dr

)
, (5)

where c is the sound speed. The cut-off wavenumber encapsulates the reflection that can occur when a wave

travels vertically into a region where its vertical wavelength becomes long compared to the density height.

As such, the inclusion of the cut-off wavenumber is particularly important for the long wavelength waves for

which kH � 1. In this limit, the stability criteria becomes exceedingly simple. For example, deep within a

stellar convection zone where H ≈ H and k2
c ≈ 1/4H2, we find stability for N2 > −4Ω2.

How likely are stable thermal Rossby waves to exist in a star like the Sun? From an examination of

Equation (4) it becomes clear that stable waves can exist in a nominally unstable stratification (N2 < 0) as

long as the rotation rate is of the same order as (or larger than) the modulus of the buoyancy frequency.

Figure 1 illustrates the square of the buoyancy frequency N2 as a function of radius within model S, a

standard model of the Sun’s interior structure (Christensen-Dalsgaard et al. 1996). The square of the Sun’s

Carrington rotation rate, Ω2
�, is indicated by the horizontal red lines. Within the Sun’s convection zone

(shaded gray), the square of the buoyancy frequency is negative and thus the atmosphere is globally unstable

to convection. However, within the lower half of the Sun’s convection zone, the rotation rate becomes larger

than the modulus of the buoyancy frequency and stable thermal Rossby waves become possible for long

wavelengths. Hindman & Jain (2022) estimated that waves with an azimuthal order m = kφR� less than 30

might be stabilized by the rotation.

Since thermal Rossby waves are low frequency they will have frequencies commensurate with a subset

of the g modes that reside in the Sun’s radiative interior. Thus, there exists the intriguing possibility that

the thermal Rossby waves will be coupled with the prograde branch of the g modes. In β Cephei stars, the

coupling of thermal Rossby waves that reside within the convective core with the g modes of the overlying

stable envelope has been proposed as a mechanism for the excitation of pulsations (Osaki 1974; Lee & Saio

1986, 1987). But, such coupling has not been explored previously in a solar context.

The nonlinear waveforms, often called banana cells, that result when thermal Rossby waves are unstable

have been studied extensively in the solar and stellar context through numerical simulations (e.g., Miesch

et al. 2000; Hotta et al. 2015; Nelson et al. 2018; Hindman et al. 2020a,b). While a few studies of waves in

atmospheres with adiabatic stratification have been performed in the past (Glatzmaier & Gilman 1981; Bekki

et al. 2022; Hindman & Jain 2022), far less attention has been paid to the stable form of these waves when

the atmosphere is convectively unstable (N2 < 0). This will be our goal here, to derive the eigenfrequencies

and eigenfunctions for the thermal Rossby waves that exist in a weakly unstable stratification. In particular,

we explore the analytic solution presented by Hindman & Jain (2022) for thermal Rossby waves within a

polytropic atmosphere. That solution is valid irrespective of whether the polytropic stratification is stable,

unstable, or neutrally stable. Here we examine the potentially complex eigenfrequencies and eigenfunctions

that apply for globally unstable stratifications.

Section 2 of this paper provides the governing equation for the thermal Rossby waves within a stratified

atmosphere. Section 3 describes the polytropic atmosphere and presents the analytic solutions. Section 4

explores how the thermal Rossby waves that reside within the solar convection zone might couple with the

g modes that are trapped within the radiative interior. Finally, in Section 5 we discuss the implications of

our results on mode stability and the visibility of g modes.



– 4 –

2. Atmospheric Waves in a Rotating Star

We seek solutions for sectoral modes that propagate longitudinally and potentially radially. We prohibit

propagation in the latitudinal direction and assume that any atmospheric variation in that direction can be

ignored. Such a 2D approximation is consistent with waves that are rotationally dominated and satisfy the

Taylor-Proudman constraint. Further, we ignore the curvature of the star’s isopycnals and assume constant

gravity within a local plane-parallel model. Since we are interested in sectoral modes, we place the local

Cartesian coordinate system at the star’s equator. We orient the axes of this coordinate system such that

x̂ points in the longitudinal direction, ẑ points radially and antiparallel to the gravitational acceleration

g = −gẑ, and ŷ points in the invariant latitudinal direction, parallel to the star’s rotation vector, Ω = Ωŷ.

Under such conditions, Hindman & Jain (2022) have shown that linear atmospheric waves in the rotating

reference frame satisfy the following governing equation,

d2Ψ

dz2
+ k2

z(z)Ψ(z) = 0 , (6)

where kz is a height-dependent vertical wavenumber,

k2
z(z) ≡ ω2 − ω2

c − 4Ω2

c2
− k2

x

(
1− N2

ω2

)
+

2Ωkx
ω

(
1

H
− 2N2

g

)
. (7)

This local vertical wavenumber depends on the atmospheric profiles of the sound speed c, buoyancy

frequency N , acoustic cutoff frequency ωc, and density scale height H. The variable Ψ(z) expresses the radial

behavior of the wave’s Lagrangian pressure fluctuation δP , scaled by the square root of the atmosphere’s

mass density ρ0,

δP (x, z, t) = ρ
1/2
0 Ψ(z) ei(kxx−ωt) . (8)

We seek plane-wave solutions in the longitudinal direction where ω is the temporal frequency and kx is

the zonal wavenumber. We have adopted the sign convention that for a positive wavenumber, kx > 0, the

waves propagate in the prograde direction if the frequency is positive, ω > 0, and in the retrograde direction

for negative frequencies, ω < 0. For comparison to waves in spherical geometry, the zonal wavenumber

is related to the azimuthal order of the concomitant spherical harmonic m = kxR, where R is the stellar

radius. Equation (6) describes the propagation of acoustic waves and gravito-inertial waves within an

atmosphere with a general stratification. In the next section we specialize to a polytropic stratification

which is particularly relevant to stellar convection zones.

3. Polytropic Stratification

A polytrope is an atmosphere for which the atmospheric pressure P0 is related to the mass density ρ0

through a power-law relation, where the exponent is usually expressed in terms of a polytropic index α,

P0 ∼ ρ(α+1)/α
0 . (9)
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In such an atmosphere all of the thermodynamic profiles become power-law functions of the height coordinate,

z. Hence, the pressure, density, and temperature all vanish at the height z = 0 and the atmosphere exists

only within the half-space z < 0. For a polytropic stratification, the governing equation can be rewritten in

the form of Whittaker’s Equation (for details see Hindman & Jain 2022),

d2Ψ

dζ2
+

[
κ

ζ
− 1

4
− ν(ν − 1)

ζ2

]
Ψ = 0 , (10)

where ζ = −2kxz is a dimensionless depth, ν ≡ (α+ 2) /2 depends on the stratification, and κ is a constant

eigenvalue,

κ ≡
(
α+ 1

2γ

)
ω2 − 4Ω2

gkx
+
α− α̂
2γα̂

gkx
ω2

+

[
α− 2 (α− α̂)

γα̂

](
Ω

ω

)
. (11)

In the expression for κ above, γ is the fluid’s adiabatic exponent and α̂ is the value of the polytropic index

that corresponds to an atmosphere that is neutrally stable to convective overturning, α̂ ≡ (γ − 1)
−1

. If

α > α̂ the atmosphere is stably stratified and if α < α̂ the atmosphere is unstable to convective motions.

The constant κ is the radial eigenvalue of the ODE. Since κ depends on the frequency and zonal wavenumber,

once any given eigenvalue is obtained by applying boundary conditions, Equation (11) serves as a global

dispersion relation for that radial mode. The term that is colored red in Equation (11) engenders acoustic

oscillations and arises from the compressibility of the fluid with a weak correction by the Coriolis force. The

blue term is due to buoyancy and is responsible for internal gravity waves. Finally, the orange term results

from the Coriolis force and produces inertial waves.

Whittaker’s Equation (Abramowitz & Stegun 1964) has two solutions that can be expressed in terms of

Kummer’s confluent hypergeometric functions of the first and second kind, M and U . The general solution

for the Lagrangian pressure fluctuation is therefore a linear combination of these two solutions,

δP (z) = ρ
1/2
0 Ψ(z) = zα+1 ekxz [CMM (ν − κ, 2ν,−2kxz) + CUU (ν − κ, 2ν,−2kxz)] , (12)

with arbitrary constants CM and CU whose ratio is determined by the boundary conditions. We will examine

two different sets of boundary condition, one that is appropriate for a semi-infinite domain, z ∈ (−∞, 0 ] and

the other for a finite domain with a depth of D, z ∈ [−D, 0 ].

3.1. Eigenvalues for a Semi-infinite Domain

For illustrative purposes, we will consider a semi-infinite domain where we impose regularity conditions

at the two singular points of Whittaker’s equation (i.e., at z = 0 and z → −∞). Of course, a real star

does not possess an infinite domain. But, as long as the turning points that correspond to the edges of

the wave cavity are far from the physical boundaries, the solution is insensitive to whether we apply the

boundary conditions at a finite depth or not. From Whittaker’s Equation (10) we can deduce that deep in

the polytropic atmosphere (z → −∞ or ζ →∞) the solutions are evanescent and decay exponentially with

the leading behavior, Ψ ∼ exp (kxz). Further, by setting the coefficient in square brackets in Equation (10)

to zero, we find that the wave cavity has a lower boundary (or turning point) that predominantly scales

inversely with the zonal wavenumber,
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zturn = − ζ

2kx
= k−1

x

[
−κ+

(
κ2 − ν2 + ν

)1/2]
. (13)

Hence, for short zonal wavelengths, the wave cavity is confined within the upper portion of the polytrope

and the eigenvalues are insensitive to a boundary condition that is applied at a deep but finite depth.

When the previously discussed conditions of regularity are imposed, the eigenvalue κ is restricted to a

discrete spectrum of values labelled by their radial order n,

κ = κn = n+
α+ 2

2
, (14)

which can be any non-negative integer, n ∈ 0, 1, 2, 3, · · ·. Note, the eigenvalue is insensitive to the zonal

wavenumber kx because a semi-infinite polytropic atmosphere is self-similar and lacks an imposed scale

length (see Hindman & Jain 2022). In addition to the simple analytic expression for the eigenvalue, the

eigenfunctions also become more tractable. Regularity at both singular points collapses both Kummer func-

tions into Associated Laguerre Polynomials (Abramowitz & Stegun 1964). The solution for the eigenfunction

of the nth radial order is therefore given by

δPn(z, x, t) = Cn z
α+1 ekxz L(α+1)

n (−2kxz) e
i(kxx−ωnt) , (15)

where Cn is an arbitrary constant and L
(a)
n is the nth-order Associated Laguerre Polynomial. In sections 3.3

and 3.4 we will discuss the resulting eigenfrequencies and eigenfunctions in conjunction with those appropriate

for the finite domain that we will discuss in the next subsection.

3.2. Eigenvalues for a Finite Domain

In this subsection we model the convection zone of a low-mass star as a polytropic layer of finite depth

D, spanning z ∈ [−D, 0 ]. For boundary conditions, we impose regularity at the origin (a singular point of

Whittaker’s Equation) and vanishing of the Lagrangian pressure fluctuation at the bottom of the layer—

which for low frequency is consistent with a condition of impenetrability (see Hindman & Jain 2022). Since,

the U hypergeometric function is singular at the origin, the eigenfunction only depends on the M confluent

hypergeometric function,

δPn(z, x, t) = Cn z
α+1 ekxzM (ν − κn, 2ν,−2kxz) e

i(kxx−ωt) , (16)

and the eigenvalue κn is determined by a transcendental dispersion relation that enforces the boundary

condition at the bottom of the layer,

M (ν − κn, 2ν, 2kxD) = 0 . (17)

We have numerically solved for the roots of this equation for a convection zone depth of D = 200 Mm and

a stellar radius equal to that of the Sun, R = 696 Mm. Figure 2 illustrates the resulting eigenvalues κn as a

function of azimuthal order m = kxR for modes with a radial order n less than 9. The solid blue curves show
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κn for the finite domain, whereas the black dotted lines illustrate the eigenvalue for the semi-infinite domain,

κn = n+ α/2 + 1. The eigenvalues for the finite domain begin with a large value at low zonal wavenumber

and decrease with increasing wavenumber, eventually asymptoting to a constant value that corresponds to

the eigenvalue that holds for the semi-infinite domain. This asymptotic behavior occurs because the lower

turning point moves higher in the atmosphere as the zonal wavenumber increases and once it has passed into

the domain (i.e., when zturn > −D), the boundary condition at the bottom of the convection zone becomes

increasing unimportant.

3.3. Eigenfrequencies for Slow Rotation

Given a numerical value for the eigenvalue κ, Equation (11) can be solved to obtain the corresponding

eigenfrequencies. In order to understand the relative importance of each of the terms that appear in the

definition of κ, it is useful to define several nondimensional parameters.

ω̃ ≡ ω

Ω
, (18)

A ≡ (α+ 1)

2γ
, (19)

S ≡ α− α̂
2γα̂

g

Ω2R
, (20)

ε ≡ Ω2R

g
. (21)

The nondimensional wave frequency ω̃ is based on the star’s rotational period and A is a coefficient for the

term that leads to acoustic waves. The quantity S acts as a convective stability criterion for the stratification.

When S > 0 the atmosphere is stable to convective overturning and when S < 0 the atmosphere is unstably

stratified. The magnitude of S indicates the importance of buoyancy to rotation. Since the buoyancy

frequency, N , diverges at the origin of a polytrope (where the density vanishes), there is always a region

in the upper portion of the polytrope where |N | > Ω. Conversely, deep in the atmosphere the buoyancy

frequency vanishes as the depth increases and is therefore small compared to the rotation rate, |N | < Ω.

The stability parameter S determines the depth of the transition between these two regimes, ztran = −2SR.

The parameter ε is a nondimensional measure of the rotational speed that characterizes the centrifugal

deformation of a star. For a star rotating much slower than its break up rotation rate, ε is a small parameter.

For example, for the Sun ε = 2× 10−5 (Gizon et al. 2016). The smallness of ε will prove useful, enabling the

expansion of the dispersion relations into distinct branches for the acoustic waves and the gravito-inertial

waves.

By using these nondimensional numbers, the definition of κ can be rewritten more succinctly

κn =
Aε

m

(
ω̃2 − 4

)
+
mS

ω̃2
+
α− 4εS

ω̃
. (22)

Once again, the red, blue, and orange terms are due to compressibility, buoyancy, and the Coriolis force,

respectively. This expression, when multiplied by ω̃2, is a quartic polynomial in the frequency. Hence, for any

given value for the eigenvalue κn, there are four solutions for the frequency. Furthermore, since the equation
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has the form of a depressed quartic and the coefficients are all real-valued, two of the roots always have a

real frequency and the other two are either real or form a complex conjugate pair. The two roots that are

always real correspond to high-frequency acoustic waves and these arise from the red term in Equation (22).

The other two solutions (with real or complex frequencies) are low-frequency gravito-inertial waves and they

arise jointly from the blue and orange terms in Equation (22).

When ε is small (slow rotation), the high-frequency and low-frequency branches can be easily separated

by expanding the eigenfrequency in powers of the small parameter ε. The high-frequency solutions are found

by expanding in terms of ε1/2,

ω̃n = ε−1/2
∞∑
j=0

ajε
j/2 . (23)

By solving the global dispersion relation (22) order by order, we find the first two terms in the expansion,

ω̃n =
(mκn

A

)1/2

ε−1/2 − α

2κn
+O

(
ε1/2

)
. (24)

In dimensional variables, this translates to

ωn = ±
(

2γ

α+ 1
κngkx

)1/2

− αΩ

2κn
+O

(
Ωε1/2

)
. (25)

As expected, the eigenfrequencies for the acoustic waves are always real and hence the acoustic modes are

always stable.

The form of Equation (25) is agnostic of the boundary conditions. The eigenfrequencies depend on the

boundaries only through the eigenvalue κ. If we employ the solution for κn that applies for a semi-infinite

atmosphere,

κn = n+ ν = n′ + α/2 , (26)

with n′ = n+ 1, we obtain the well-known eigenfrequencies for p modes in a polytropic atmosphere (Lamb

1945) but with a rotational correction,

ωn = ±
(

γα

α+ 1

)1/2(
2n′ + α

α
gkx

)1/2

− αΩ

2n′ + α
+O

(
Ωε1/2

)
. (27)

The mode with radial order n produces the p mode called pn′ , i.e., n = 0 corresponds to p1, n = 1 to p2,

and so on.

The low-frequency gravito-inertial waves are obtained with an expansion in powers of ε,

ω̃ =

∞∑
j=0

bj ε
j , (28)

which to leading order produces
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ωn = ± αΩ

2κn
±
(
α2Ω2

4κ2
n

+ S
gkx
κn

)1/2

+O (Ωε) . (29)

We immediately deduce that the eigenfrequencies are complex if the atmosphere possesses a sufficiently

strong unstable stratification,

S < − α2Ω2

4gkxκn
= − α2ε

4mκn
. (30)

The condition for stability is a global one that depends not only on the stratification, rotation rate, and

wavelength, but also on the boundary conditions through the eigenvalue κ. Even for an atmosphere with an

unstable stratification (S < 0 or α < α̂), a mode can be stabilized by rotation if the mode has sufficiently low

zonal wavenumber kx and low radial order n (i.e., low m and low κn). Equivalently, for a given radial order

n, stability parameter S, and rotation rate Ω, the mode is stable for low zonal wavenumbers and unstable

for azimuthal orders exceeding a threshold,

m > − α2ε

4κnS
. (31)

This behavior is exhibited in Figures 3 and 4. The polytropic atmosphere for each is weakly unstable with

S = −5 × 10−3 or, equivalently, α − α̂ = −5 × 10−7. Figure 3 illustrates the complex eigenfrequencies

for the low-frequency gravito-inertial waves in a semi-infinite domain (see subsection 3.1). The left-hand

panel shows the real part of the eigenfrequencies, while the right-hand panel presents the imaginary part

or growth rate. The first four radial orders (n = 0, 1, 2, 3) are shown as colored curves, respectively, black,

green, blue, and red. Modes of higher radial order (up through n = 9) are displayed in light blue. There are

two gravito-inertial wave solutions and both are prograde propagating with positive frequencies. The higher

frequency solution, or the fast gravito-inertial wave, is shown with the solid curves. The slow gravito-inertial

wave is displayed with dashed curves. As the wavenumber increases, the slow and fast gravito-inertial waves

have real frequencies that slowly converge. At the threshold of convergence (at marginal stability) and

beyond, the two modes become a complex conjugate pair with the same real part of their frequencies and

oppositely signed imaginary parts (only the positive root is illustrated). When the two modes have purely

real frequencies the modes correspond to overstable convective modes. Both the fast and slow waves would

have been convectively unstable and non-oscillatory in the absence of rotation. When the mode frequencies

are complex, the two solutions correspond to unstable, oscillatory convective modes that travel prograde at

the same speed. For moderate values of the azimuthal order m, these unstable modes have a growth rate

that is commensurate with their oscillation frequency. Hence, the modes grow in amplitude over a time scale

of roughly the rotation period. At marginal stability and beyond, the two gravito-inertial waves have been

called thermal Rossby waves in the convection literature (e.g., Busse 1986). Here, we use the term thermal

Rossby wave to describe both the unstable and stable solutions.

Figure 4 displays the complex eigenfrequencies for the finite domain. The color of the curves and the

line styles have the same meaning as in Figure 3. We have included the eigenfrequencies for the semi-infinite

domain as the dotted curves. Only the lowest four radial orders possess low-wavenumber overstable modes.

For n ≥ 4 the gravito-inertial waves are unstable for all azimuthal orders. The lowest order modes look

very similar to those of the semi-infinite domain, except for the fast gravito-inertial wave at the lowest

wavenumbers. This occurs because the lower turning point is below the bottom of the radial domain for low
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wavenumbers. Hence, these modes are sensitive to the boundary condition at the bottom of the layer. Similar

behavior for the thermal Rossby wave where the eigenfrequency approaches zero as the zonal wavenumber

approaches zero has been seen previously (Glatzmaier & Gilman 1981; Bekki et al. 2022; Hindman & Jain

2022). As was noted for the semi-infinite domain, the growth rate of the unstable modes is comparable to

the rotation rate of the star for moderate azimuthal and radial orders.

3.4. Eigenfunctions

Oddly, if the boundary conditions lack explicit dependence on the wave frequency, ω, the two acoustic

modes and the two gravito-inertial wave modes have identical eigenfunction for the Lagrangian pressure

fluctuation for the same zonal wavenumber kx. This arises because the ODE for the Lagrangian pressure

fluctuation depends on the eigenfrequency only through the eigenvalue κ, and all four wave modes have the

same degenerate eigenvalue. Where the four wave modes differ is the eigenfunctions for the other physical

variables. For example, the zonal and radial velocity components, u and w respectively, can be obtained from

the Lagrangian pressure fluctuation through the following differential operators (Hindman & Jain 2022),

u =
σ2ω

ω4 − σ4

[
d

dz
+
ω2kx
σ2
− 1

H

](
δP

ρ0

)
, (32)

w = − iω3

ω4 − σ4

[
d

dz
+
σ2kx
ω2
− 1

H

](
δP

ρ0

)
, (33)

where σ2 ≡ gkx−2Ωω. Since, these differential operators are frequency dependent, the velocity eigenfunctions

for the acoustic waves and the gravito-inertial waves of the same radial order n will differ even though they

possess the same eigenvalue κn.

Further, in the low-frequency limit that is appropriate for the two gravito-inertial modes, the radial

velocity, w, is proportional to the reduced Lagrangian Pressure fluctuation w ∝ δP/ρ0 and the zonal velocity,

u, is identical to within a constant amplitude for the fast and slow gravito-inertial waves. This becomes

apparent when the low-frequency limit, ε� 1, of Equations (32) and (33) is taken,

u → − ω

gkx

[
d

dz
− 1

H

](
δP

ρ0

)
, (34)

w → iω

g

(
δP

ρ0

)
. (35)

Finally, we note that even for the unstable modes the Lagrangian pressure fluctuation has a real eigen-

function and from Equations (34) and (35) we can see that the eigenfunctions for the two velocity components

are complex, but possess a complex phase that is independent of height. Furthermore, since we have adopted

a weakly unstable polytrope with S = −5 × 10−3 and α − α̂ = −5 × 10−7, the eigenfunctions are nearly

indistinguishable from the eigenfunctions for a neutrally stable atmosphere (S = 0 and α = α̂). Hence,

instead of providing redundant illustrations here, we refer the reader to Figures 5 and 7 of Hindman &

Jain (2022). Figure 5 from Hindman & Jain (2022) shows eigenfunctions for the semi-infinite atmosphere

developed in 3.1 and Figure 7 presents eigenfunctions for the finite layer discussed in subsection 3.2
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4. Coupling of Thermal Rossby Waves with Prograde g Modes

In the previous section we applied a perfectly-reflecting boundary condition (i.e., δP = 0) at the bottom

of the convection zone. Hence, the thermal Rossby modes were completely confined to the convection zone

and any potential coupling to the g modes of the star’s stably-stratified radiative interior was neglected.

Since, the square of the buoyancy frequency increases dramatically over the thin boundary between the

convection zone and radiative interior, we expect that the reflection is indeed almost total and the coupling

between g modes of the interior and thermal Rossby modes of the convection zone is extremely weak, except

when the thermal Rossby wave and the gravity wave happen to have a common frequency. Hence, in a

dispersion diagram we should see two distinct families of dispersion curves and where those curves cross (i.e.,

have common frequencies) we expect to see avoided crossings.

In order to demonstrate how the avoided crossings might appear, we have developed a simple, illustrative

model consisting of a weakly-unstable polytropic layer of finite depth D that overlays an isothermal layer of

thickness L. The polytrope represents the Sun’s convection zone and the isothermal atmosphere its radiative

interior. As before, we adopt D = 200 Mm and S = −5 × 10−3. We choose the buoyancy frequency of the

isothermal atmosphere such that it is comparable to the buoyancy frequency of the Sun’s interior, N = 10−3

s−1. For illustrative purposes we set the depth of the isothermal layer L to an unrealistically thin value,

L = 500 km. We do this to control the frequency spacing between g modes of nearby radial order. If we were

to use a more realistic value, say L = 500 Mm, the separation between g modes would be so tiny that the

density of g-mode ridges in the dispersion diagram would obscure the effect that we are seeking to illustrate.

The reader should note that the fine spacing between g modes is not the result of our choice of an isothermal

atmosphere. Instead, it is a consequence of the smallness of inertial wave frequencies in comparison to the

radiative interior’s buoyancy frequency, ω � N .

For boundary conditions, we require that the solution is regular at the origin, z = 0, and that the vertical

derivative of the Lagrangian pressure fluctuation vanishes at the bottom of the isothermal atmosphere, z =

−(D+L). This later condition is appropriate if the bottom boundary were to correspond to the radial center

of the star. At the interface between the polytrope and isothermal atmosphere (z = −D), we require that the

Lagrangian pressure fluctuation and its radial derivative are continuous. These conditions are consistent with

the continuity of the pressure fluctuation and the normal velocity component. In the isothermal atmosphere

the solutions for Ψ are sinusoidal (see Hindman & Jain 2022) and the boundary condition at the bottom

of that layer fixes the phase of the sinusoid. Within the polytrope, the upper boundary condition fixes the

solution to be the one proportional to the M Kummer function. The eigenfunction can therefore be written

in the form

Ψ(z) =

{
Ciso cos [Kiso(z +D + L)] for z < −D ,

Cpoly z
ν ekxzM (ν − κ, 2ν,−2kxz) for z > −D ,

(36)

where Ciso and Cpoly are constant amplitudes and Kiso is the radial wavenumber within the isothermal

atmosphere,

K2
iso =

ω2 − ω2
c − 4Ω2

c2
− k2

x

(
1− N2

ω2

)
+

2Ωkx
ωH

. (37)

The global dispersion relation arises from the two continuity conditions and has the form,
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Kiso tan (KisoL) + kx −
α+ 2

2D
− 2kx

M ′ (ν − κn, 2ν, 2kxD)

M (ν − κn, 2ν, 2kxD)
= 0 , (38)

where M ′ = dM/dζ is the derivative of the M Kummer function with respect to its third argument (the

spatially varying argument).

Figure 5a illustrates the eigenfrequencies for this “toy” model. As predicted there are two families of

solutions. Superimposed over the family of thermal Rossby waves that we found in the previous section for

the finite domain (see Figure 4), one observes a set of g modes that have frequencies that monotonically

increase with the zonal wavenumber kx. The thermal Rossby waves that we found before by ignoring the

presence of the g mode cavity are indicated by the black dotted curves. Wherever the dispersion curve for

a thermal Rossby mode trapped in the convection zone crosses a dispersion curve for an interior g mode an

avoided crossing occurs. Since, the jump in the buoyancy frequency between the isothermal atmosphere and

the polytrope is strong with a ratio of 7×108, the reflection coefficient between the two layers is nearly unity

and the avoided crossings are extremely tight. Therefore, they are not easily visible in panel a. Figure 5b

provides a zoom-in view of the crossing indicated in panel a by the small square box. As can be seen, the

coupling between a g mode and a thermal Rossby waves occurs over a very narrow range of frequencies where

the two distinct cavities have a common resonance.

5. Discussion

We have developed an analytic solution for atmospheric waves of all types that is valid in a compressible,

polytropically-stratified atmosphere. In total there are four atmospheric wave solutions: two high-frequency

acoustic waves and two low-frequency gravito-inertial waves. Our analytic solution has the form of a longitu-

dinal plane wave multiplied by a radial eigenfunction comprised of Kummer functions. This solution is valid

for any value of the polytropic index, independent of whether the polytrope is stable or unstable to convective

overturning. We have explicitly illustrated solutions only for a weakly unstable stratification appropriate

for a stellar convection zone. In such a stratification, both gravito-inertial waves propagate in the prograde

direction. In a neutrally stable atmosphere (N2 → 0), the slow wave becomes a degenerate, zero-frequency

wave that is stationary in the rotating frame and the fast wave persists as a prograde-propagating wave

(Hindman & Jain 2022).

Previous studies have explicitly considered low-frequency waves in a neutrally stable atmosphere. Glatz-

maier & Gilman (1981) solved for the eigenfrequencies in the anelastic limit for a polytropic layer of finite

radial extent using Frobenius expansions to describe the eigenfunctions. Bekki et al. (2022) solved for the

linear eigenmodes by numerically solving the spatially discretized fluid equations in spherical geometry.

Hindman & Jain (2022) derived the Kummer-function solutions in the limit of neutral stability (N2 = 0).

For all of these previous efforts, the wave solutions correspond to the fast gravito-inertial wave that we

have explored here, which becomes a pure inertial wave when the buoyancy frequency is identically zero

throughout the radial domain.

5.1. Wave Nomenclature

The two gravito-inertial waves that we find here, and which we have called the fast and slow thermal

Rossby wave, are completely analogous to the two wave solutions found by Busse (1986) for a Boussinesq
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fluid in a rotating cylindrical shell. Just as we have assumed here, Busse (1986) ignored variations and

motions parallel to the rotation axis. While we have a compressional β effect due to the gravitational

stratification of density, Busse (1986) introduced a topological β-effect by allowing the upper and lower caps

of the cylindrical domain to be conical with a tilt designed to mimic the effects of a spherical surface. To

illustrate the similarities, we explore Busse’s model in the dissipationless limit.

Busse (1986) derived dispersion relations for linear waves for systems with and without diffusion. For an

inviscid fluid without thermal conduction, the two wave solutions found by Busse (1986) possess frequencies

that can be rewritten in the following form

ω =
Kkxτ

−1

k2
x + k2

z

[(
1 +

k2
z

K2

)1/2

±
(

1− k2
x

K2

)1/2
]
, (39)

where kx is the azimuthal wavenumber, kz is the radial wavenumber, τ is a free-fall time, and K is the

azimuthal wavenumber that corresponds to the margin of stability,

τ ≡ D

gαT∆T

1/2

, (40)

K2 ≡ 4 sin2(χ)
τ2Ω2

D2
− k2

z . (41)

The free-fall time τ and the threshold wavenumber K, depend on the thickness of the cylindrical shell D,

the coefficient of thermal expansion αT , the temperature difference between the inner and outer cylindrical

surfaces ∆T , and the angle χ between the upper and lower conical surfaces and the equatorial plane. Note,

we have written the centrifugal buoyancy term that appears in Busse’s expressions in the form of a more

traditional gravitational buoyancy.

In Figure 6 we plot the real and imaginary parts of the eigenfrequencies for these two modes for the

parameter value KD/π = 0.3. All of these solutions have a purely real frequency for kx ≤ K and a complex

frequency for kx > K. The vertical gray line indicates the marginal wavenumber kx = K that separates

the stable and unstable solutions. The color of each curve indicates the radial order n of the mode with

kz = nπ/D. Note, the similarity between Figures 4 and 6. Each model has two gravito-inertial waves, and

both modes are stable for low azimuthal wavenumber and become unstable once the azimuthal wavenumber

crosses a threshold value. The similarities arise because the waves in both models are controlled by a β

effect, the effect being topological in Busse’s and compressional in ours.

The solid curves in Figure 6 indicate the wave with the faster phase speed, i.e., the plus sign in Equa-

tion (39). When the mode is stable, Busse (1986) refers to this mode as the “hydrodynamic mode” and

notes that it behaves like a Rossby wave. In the limit of rapid rotation or weak instability, Ωτ → ∞, this

fast wave satisfies the dispersion relation

ω =
βkx

k2
x + k2

z

+ · · · , (42)

where the topological β effect is given by β = 4 sin(χ)Ω/D. In our model, the same limit of rapid rotation

or weak instability is achieved by considering N2/Ω2 → 0. In Hindman & Jain (2022) we demonstrate that

the local dispersion relation for the fast mode reduces to
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ω =
βkx

k2
x + k2

z + k2
c

+ · · · , (43)

with a compressional β effect given by β = 2Ω/H. This is clearly a Rossby wave with a correction for

stratification (appearing in β and through k2
c ).

The slower of the two modes—i.e., the minus sign in Equation (39)—is illustrated in Figure 6 with

dashed curves. Busse (1986) calls the stable slow mode the “thermal mode” and points out that it becomes

a zero-frequency wave in the limit of rapid rotation (or weak instability),

ω =
csc(χ)D

2Ω1/2τ3/2
kx + · · · . (44)

This same behavior occurs for our slow gravito-inertial wave. In the rapidly rotating limit, Hindman & Jain

(2022) derived the following local dispersion relation for the slow mode,

ω =
H|N2|

Ω
kx + · · · . (45)

Finally, to complete the discussion of Busse’s terminology, he identifies both wave branches as thermal

Rossby waves, but does so only during a discussion of the marginally-stable and unstable modes. We adopt

his nomenclature and refer to both gravito-inertial waves as thermal Rossby waves, but for ease of language,

we have chosen to use the term thermal Rossby wave, irrespective of the stability of the mode.

5.2. The Stability Threshold

We have calculated the eigenmodes for a weakly unstable polytrope with the explicit intention of ex-

ploring the behavior of overstable convective modes in a star’s convection zone. In the absence of rotation,

the internal gravity waves of such an atmosphere would take on the form of unstable convective modes.

We confirm the well-known property that rotation can stabilize convective motions, resulting in overstable

convective modes that propagate in the prograde direction. Only the longest wavelengths are stabilized and

any waves with an azimuthal order larger than

m > mthresh = − α2ε

4κnS
, (46)

are unstable, taking on the form of prograde-propagating, oscillating, convective modes. This threshold

wavenumber corresponds to the location in the dispersion diagram where the frequencies of the fast and slow

gravito-inertial waves merge and become complex conjugates (see Figures 3 and 4).

One can discern that this wavenumber threshold is highly sensitive to the superadiabatic gradient of

the convection zone. This is most easily recognized by expressing the threshold in terms of the atmosphere’s

density scale height H, its specific entropy gradient, ds/dr, and the specific heat at constant pressure cp,

m > − ε2cp
2(γ − 1)κn

(
H
ds

dr

)−1

. (47)
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In deriving this expression, we have assumed that the atmosphere is nearly adiabatic, α ≈ (γ − 1)
−1

, utilized

the relationship between the entropy gradient and the buoyancy frequency

ds

dr
=
cpN

2

g
, (48)

and used (20) to express the buoyancy frequency in terms of our stability parameter S,

N2 =
2ε

α

gS

H
. (49)

If the frequencies of the overstable convective modes were to be observable, and the wavenumber thresh-

old mthresh measurable, the threshold could be used to estimate the superadiabaticity of the convection zone,

ds

dr
≈ − ε2cp

2(γ − 1)κnmthresh

1

H
. (50)

5.3. Gravity Mode Visibility

The p modes and f modes of helioseismology have been observed and utilized since the 1960s to probe

the properties of the solar interior. These modes have a high visibility because their wave cavities reside

in the convection zone and their eigenfunctions extend very close to the solar photosphere where motions

and intensity fluctuations associated with the modes can be directly observed. On the other hand the g

modes that live within the radiative interior have not been unambiguously detected. Several claims of such

detection have been made over the years (e.g., Gabriel et al. 2002; Turck-Chiéze et al. 2004; Garćıa et al.

2007; Fossat et al. 2017); however, the measurements are difficult and independent verification has proven

slippery. The primary reason for the elusivity of the g modes is their low amplitude in the photosphere.

Their cavity is confined to the radiative interior and the eigenfunctions undergo many decay lengths between

the upper boundary of their cavity and the photosphere.

Our findings here suggest that the prograde g modes might be more visible than their retrograde cousins.

These prograde modes have the possibility to couple with thermal Rossby waves which have a shallower wave

cavity. This cavity should occupy the lower half of the convection zone and therefore the distance between

the upper turning point of the mode and the height of observation in the photosphere is roughly half of the

distance for the retrograde modes. This property is analogous to the mixed modes of a red giant for which

a g mode of the interior couples to a p mode of the envelope. Those frequencies where the thermal Rossby

wave and g modes have a common frequency might allow the properties of the g mode cavity to be explored.

Of course, thermal Rossby waves would need to be detected first. But the observational discovery of the

Sun’s resonant inertial waves is still relatively recent (e.g., Löptien et al. 2018; Hanasoge & Mandal 2019;

Gizon et al. 2021) and many additional discoveries are likely to occur.
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Fig. 1.— Square of the buoyancy frequency (blue curve) within the the Sun’s convection zone as achieved in

Model S (Christensen-Dalsgaard et al. 1996), a standard model of the Sun’s internal structure. The ordinate

axis is scaled logarithmically for both positive and negative values that have magnitudes greater than 10−13

s−2. In the region between the two black dotted lines,
∣∣N2

∣∣ < 10−13 s−2, the scaling is linear. The two

red horizontal lines indicate plus and minus the square of the Sun’s Carrington rotation rate, ±Ω2
�, where

Ω� = 2.87×10−6 s−1. In the lower half of the convection zone, the rotation is large enough to stabilize long-

wavelength convective modes (Ω� > |N |); thus, convectively unstable modes are converted into overstable

gravito-inertial waves.
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Fig. 2.— The eigenvalue κ as a function of the azimuthal order m. The horizontal dotted lines indicate the

eigenvalue for the semi-infinite domain discussed in section 3.1. Each line corresponds to a different radial

order n, κn = n + 1 + α/2. The solid blue curves show the eigenvalue for the finite domain presented in

section 3.2. The two domains have eigenvalues that converge to a common value for large zonal wavenumber.
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Fig. 3.— Complex eigenfrequencies for the semi-infinite domain. The four modes with the lowest radial order

n are shown with black, green, blue, and red curves, while all higher orders are indicated with a common

light blue color. The two panels present, as functions of the azimuthal order, (a) the real part of the complex

frequency and (b) the growth rate or the absolute value of the imaginary part of the complex frequency. At

each value of the azimuthal order, there are two gravito-inertial wave solutions. For low azimuthal orders,

both of the gravito-inertial waves are stable and prograde propagating with purely real frequency. The two

modes have different frequencies and hence different longitudinal phase speeds. The faster of these is shown

with solid curves, while the slow waves are drawn with dashed curves. For sufficiently large azimuthal order,

the two modes become unstable and correspond to prograde-propagating convective modes.
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Fig. 4.— The complex eigenfrequencies for the finite domain are shown using the solid and dashed curves,

with the line styles and colors having the same meaning as in Figure 3. The dotted curves indicate the same

eigenfrequencies for the semi-infinite domain (see Figure 3). Only four of the lowest radial order modes can

be stabilized by rotation. All higher-order modes are unstable for all azimuthal orders. The eigenfrequencies

for the two types of domains converge for sufficiently large wavenumber.
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Fig. 5.— The real part of the complex eigenfrequencies for the two-layer model, consisting of a weakly

unstable polytropic convection zone that overlies a stably stratified isothermal radiative interior. (a) Two

families of solutions are possible (shown with blue curves, the gravito-inertial waves that reside in the

convection zone and the g modes that are confined to the radiative zone. The black dotted lines indicate

four of the gravito-inertial waves that we obtained previously when a perfectly reflecting boundary was

placed at the bottom of the convection zone. These are the same eigenfrequencies that were illustrated in

Figure 4. In the two-layer model, the interface between the convection zone and the radiative interior is

partially transmitting and the two wave cavities can communicate. Because of this, when a gravito-inertial

wave has the same frequency as a g mode there is an avoided crossing. (b) A zoom-in view of the avoided

crossing marked by the small black box in panel a.
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Fig. 6.— The complex eigenfrequencies for the cylindrical, Boussinesq model of Busse (1986). The solid and

dashed curves indicate the fast and slow gravito-inertial waves, respectively. Busse (1986) referred to the

fast waves as the hydrodynamic modes and the slow waves as the thermal modes. The unstable modes (and

marginally stable modes) were collectively called thermal Rossby waves. The colors correspond to radial

order n of the mode as indicated in the legend. Only the four lowest radial orders are plotted. These modes

are completely analogous to the gravito-inertial waves that we have explored here (see Figure 4). The β

effect is topological in Busse’s model and compressional in ours. Both lead to prograde propagating waves.
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